BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Preparation of 5-(2,6-Dideoxy-2-fluoro-α-L-talopyranosyloxy)-6-hydroxynaphtho[2,3-f]quinoline-7,12-dione (FT-Alz), a New-Type, Potentially Antitumor Substance with Various Biological Activities

Tsutomu Tsuchiya, a,* Yasushi Takagi a and Hajime Yamada b,†

^aInstitute of Bioorganic Chemistry, 3-34-17 Ida, Nakahara-ku, Kawasaki, 211-0035, Japan ^bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan

Received 20 September 1999; accepted 11 November 1999

Abstract—The title compound (6), its structure being imaginatively created, has been prepared through coupling of alizarine blue (2), a classical dye, and 3,4-di-O-acetyl-2,6-dideoxy-2-fluoro-α-L-talopyranosyl bromide (3). Compound 6 has considerably higher and different antitumor activity from that of doxorubicin or its analogue (10), and, further, has properties to reverse multidrug resistance (by P-glycoprotein), to inhibit topoisomerase II, and to induce apoptosis. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Clinically important antitumor substances such as vincristine, camptothecin analogues, doxorubicin, etoposide, taxol, bleomycin, and folic acid analogues (methotrexate), except cisplatin, are all of natural origin, and considerable efforts have been made to improve the biological activities of these compounds through structural modification. However, such efforts have been little rewarded from a viewpoint of dramatic alteration of the key biological characters, such as antitumor spectrum, type of action, and drug resistance, except for antitumor potency and toxicity. This means that the fundamental biological characters originally present in the parent compounds are difficult to alter by simple chemical modification. We therefore aimed to produce new kinds of compounds by creating new structures artificially, that is, by constructing the structure a priori. To pursue this idea, we have chosen a polyphenol(aglycon)-sugar structure as the most fundamental building frame in our approach, based on the expectation that the polyphenol-aglycon will give the new compounds tumor cell-killing ability, and the sugar portion, tumor cell-recognizing ability, although a combination of both is thought to be the most

As the first trial along this line, we prepared a phenolphthalol derivative (1) bringing 2,6-dideoxy-2-fluoro-α-L-talopyranose (FT)^{1,2} at the side chain, the fluorosugar being chosen on the basis of our finding that substitution of the sugar portion of several antitumor anthracyclines with FT often gives compounds with considerably enhanced activity. However, compound 1 showed neither antitumor nor any other biological activities within our testing. At this stage, we felt the need to adjust our strategy. We tried, therefore, to unite quinone and polyphenol structures with an additional seasoning of the resulting quinone-polyphenol structure by fusing a heterocyclic ring to it. Incidentally, some quinones have been reported^{3,4} to show antitumor activities more or less. The heterocyclic ring to be fused was arbitrarily chosen, based on intuition, in the hope that it would give the new compounds a novel biological property. Based on the above concept, we searched for an appropriate compound in the range of polyhydroxyanthraquinones having a pyridine ring (or similar), and from the known compounds reported, we chose a seemingly promising structure for our purpose, 5,6-dihydroxynaphtho[2,3-f]quinoline-7,12-dione alizarine blue; original name, alizarin-blue),⁵ a synthetic classical dye,^{5–7} not used now.

important. Numerous polyphenols have been reported to show (weak) antitumor activities by themselves.

^{*}Corresponding author.

[†]A master course student.

Ho OH

Chemistry

Coupling of alizarine blue (2) with FT was carried out under Koenigs-Knorr conditions (HgO, HgBr₂, MS3A, benzene, reflux 5 h) using 3^2 (1.2 mol equiv for 2) and the resulting 4 and the 5,6-diFT derivative (5), after separation by preparative TLC, were deacetylated (MeONa/MeOH, THF, rt), respectively, to give a red solid of 6 (54% based on 2) and a yellow solid of diFT-Alz 7 (6%). No 6-FT-Alz analogue was produced. Compound 6 was reprecipitated from a solution of CHCl₃-MeOH (2:1) by gradual addition of isopropyl ether, mp 167–169.5 °C, $[\alpha]_D^{24}$ + 10° (c 0.1, pyridine). The structure of **6** was determined by the NMR spectra;⁸ the position of FT attached to 2 was decided by a signal of phenolic OH, δ 13.1 (br), the low-field shift indicating the hydrogen bonding between OH-6 and =O-7. The structure of 6 was further confirmed by X-ray crystallography [the crystal used was prepared from a CHCl₃-MeOH (2:1) solution by gradual evaporation (3 days) of the solvents].

Antitumor Activity

Antitumor activities of **6** and **7** were examined in vitro (Table 1), which show that **6** is similarly or more active than doxorubicin (DOX) against the cell lines tested, except for the lines of leukemia (K562, P388, and L1210), but **7** and alizarine blue itself were practically devoid of activity, indicating that 5-O-glycosylation is necessary to produce appreciable antitumor activity. In an acute toxicity test, **6** showed approximately 10 times less toxicity than DOX (mice, ip administration).

To investigate the structure–activity relationships, 6-*O*-methyl (8) and 1,2,3,4-tetrahydro (9) derivatives of FT-Alz were prepared. Methylation of 4 (CH₃I, Ag₂O, CH₃CN) followed by deacetylation gave 8 (¹H NMR in CDCl₃, δ 4.09 s, OCH₃); catalytic reduction of 4 (H₂/PtO₂, dioxane) followed by deacetylation (NaOMe/MeOH) of the products gave 9 through air oxidation of the resulting hydroquinone intermediates. The data for ¹H, ¹⁹F, and ¹³C NMR spectroscopy of 9 fully support the structure.⁹ Both 8 and 9, however, showed almost no detectable antitumor activity. This indicates, together with the result of 7 (Table 1), that the free HO-6 group and aromaticity of the molecule are requisite in order to show antitumor activity.

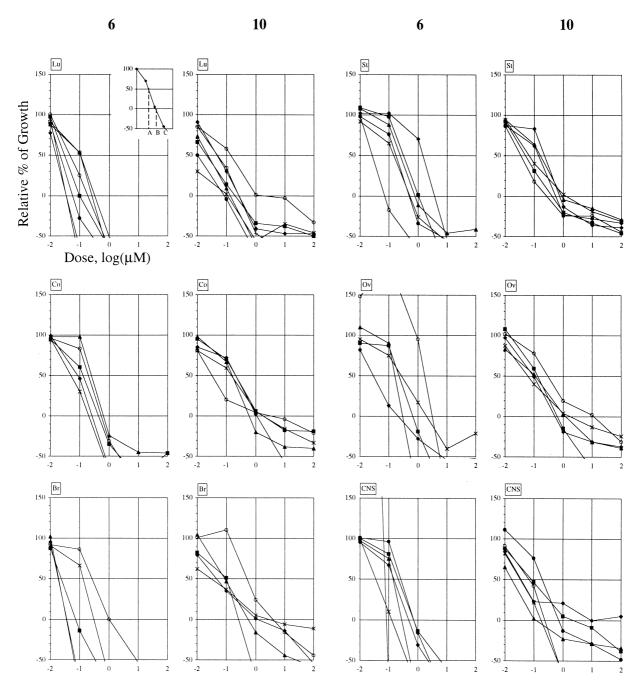

The next problem to be solved was "will 6 be really a new-type anticancer agent?" To approach the problem, we consulted the Japanese Foundation for Cancer Research (JFCR, headed by Professor Takao Yamori)

Table 1. Growth inhibitory concentrations (IC₅₀, $^{a}\mu M$; mean values of duplicate measurements) of FT-Alz (6), diFT-Alz (7) and alizarine blue (2) in comparison with doxorubicin (DOX) on various cell lines in vitro

	MKN-1	PC-14	T24	KB	HMV-1	K562	P388	P388/DOX	L1210
6	0.73	0.71	0.36	0.27	0.59	0.71	0.77	0.82	0.32
7	>8.5	>8.5	>8.5	>8.5	7.5	5.8	>8.5	>8.5	>8.5
2	14	>17	14	3.0	4.1	7.2	6.9	3.3	7.2
DOX^b	0.64	1.9	0.64	0.22	0.28	0.12	0.02	>0.9	0.05

^aIC₅₀ values (50% inhibition concentration) were determined by MTT method on day-3 cell culture.

bHydrochloride. Abbreviations: MKN-1 human gastric adenocarcinoma, PC-14 human lung carcinoma, T24 human bladder carcinoma, KB human nasopharyngeal carcinoma, HMV-1 human melanoma, K562 human leukemia, P388 murine leukemia, P388/DOX DOX-resistant P388, L1210 murine leukemia.

Figure 1. Dose response curve (done by JFCR) of **6** (1st and 3rd columns) and **10** (2nd and 4th columns) for six kinds of cancer classified by organs: lung (Lu, 7 cell lines), stomach (St, 6), colon (Co, 5), ovary (Ov, 5), breast (Br, 5), and central nervous system (CNS, 6), the cell lines in each organ being cited by different marks. The top-left figure illustrates the positions of GI_{50} (A), TGI (B), and LC_{50} (C).

Table 2. LC_{50} values^a $[log(\mu M)]$ of **6** and **10** classified by the effectiveness for the cancers of different organs

Cancers from:	6			10		
(number of cell lines)	< 0	0~1	1 <	< 0	0~1	1 <
Lung (7)	7			3		4
Stomach (6)	1	4	1			6
Colon (5)	2	2	1		1	4
Ovary (5)	1	3	1		1	4
Breast (5)	4	1		1		4
Kidney (2)	1	1				2
Central nervous system (6)	3	3		2		4
Prostate (2)	1	1				2
Melanoma (1)	1					1

^aSee Figure 1.

to carry out anticancer drug-screening tests using a diverse panel of cultured human tumor cell lines, ¹⁰ the system being based on a pioneering project in a drug-discovery screening system promoted by the National Cancer Institute ¹¹ in USA. The JFCR system adopts 39 human tumor cell lines comprising the cancers of lung (7 cell lines), stomach (6), colon (5), ovary (5), breast (5), kidney (2), central nervous system (6), prostate (2), and melanoma (1), chosen to reflect the current human cancer state in Japan. Compound 6 was therefore subjected to this system together with a doxorubicin analogue having an FT in the molecule, 7-*O*-(2,6-dideoxy-2-fluoro-α-L-talopyranosyl)adriamycinone^{1,2} (10).

At first, cell growths (measured by cell population density) of the 39 cell lines at the $48 \, h$ incubation time (t) were measured in the presence or absence of drugs (6 or 10) in various concentrations $(10^{-2}-10^2 \mu M)$, in five 10fold steps) using special panels having incubation wells, designed to coincide with the special screening protocol¹² to gain GI₅₀¹³ [the drug concentration to give 50% growth inhibition at time t (drug is added at time zero t_0) compared to the drug-free control at time t], TGI¹³ [the drug concentration resulting in total growth inhibition at time t, where cell density (T) is equal to that (T_0) at t_0], and LC₅₀¹³ values [the drug concentration to give 50% cell kill at time t relative to the cell density (T_0) at time t_0] (see the dose response curves, Fig. 1). At this stage it was, 6 exhibits remarkably stronger antitumor activity than that of 10 (compound 10 showed, in turn, slightly better activity than DOX¹⁴), as indicated in Table 2. A characteristic feature directly drawn from the above response curves (Fig. 1) would be that 6 shows, generally, relatively gentle and steep declivities at low (-2-1) and high (-1-1) concentrations, respectively, compared to those for 10; in relation to this, it is worthy of note that two cell lines of Ov and CNS showed strong growth enhancement at -1 (190%) and -2 (900%), respectively. After determining the 39 GI₅₀ values (also TGI and LC_{50} values), each mean value (in log scale) for these values was calculated, and the deviations of the respective GI_{50} values from the mean GI_{50} value were then bar-graphed,10,12 the graph being called a "finger-print" for the compound. Substances showing similar finger-prints have been shown to give a similar mechanism of action. The deviation data, together with others, are the basis, by use of the "COMPARE"

algorithm, 11,12 to find the compound to give the most (and the second most) similar finger-print pattern to the test compounds (6 and 10) among the authorized antitumor substances (more than 100) previously inputted in the program. In our cases, 6 was concluded to resemble mitomycin C with a correlation coefficient (r) of 0.62, and carboquone (r 0.57), both known as DNA alkylating agents; and 10 resembled peplomycin (r 0.84), daunorubicin (r 0.83), and bleomycin (r 0.82), all known as DNA strand-breaking agents. The results for 10 can be understood from the viewpoint of its chemical structure. In contrast, the conclusion for 6 is quite unexpected; this fact, however, may indicate that 6 is a newtype antitumor agent, because it is hard to consider that 6 acts as a usual alkylating agent, judging from its chemical structure and low acute toxicity.

Other Biological Activities

The effect of **6** for multidrug resistance (MDR) was examined. MDR human ovarian carcinoma cell line $2780^{\rm AD}$ expressing P-glycoprotein multidrug-transporter was cultured in the presence of vincristine (V_c) with or without (control) verapamil¹⁵ (V_p) or **6**, and the cellular accumulations of V_c were measured after $72\,h_1^{16}$ V_p is known to reduce the efflux of antitumor drugs from MDR cells mediated by P-glycoprotein. In $20\,\mu\rm M$ concentration of **6** (or V_p), a 160% (560% for control) accumulation of V_c compared to that by V_p (350% for control) was observed. It is noteworthy that **6** shows both strong antitumor and MDR-reversing activities.

The inhibitory effect of **6** to topoisomerase II was assayed based on the ATP-dependent decatenation of kinetoplast DNA in trypanosomatid cells by use of human topoisomerase $II\alpha$, ¹⁷ essentially according to Marini et al., ¹⁸ using ICRF-193¹⁹ as the positive reference. The 50% inhibitory concentration (IC₅₀) of **6** was shown to be comparative with that of ICRF-193 (IC₅₀: $5\,\mu\text{M}$), ²⁰ indicating that **6** has strong topoisomerase II-inhibiting ability.

In an apoptosis-inducing test using human monocyte leukemia U937 ($3\times10^5\, {\rm cells\,mL^{-1}}$ in each well), **6** showed large morphological change as well as DNA fragmentation in the concentration of $0.2\,\mu M$ after 24 h and $2\,\mu M$ after 4 h (**2** showed the activity at 35 μM after 24 h, and **8** did not).

Other biological effects of **6**, including inhibition of protein kinases, tubulin polymerization, angiogenesis, and metastasis by cancer cells (checked by invasiveness of human fibrosarcoma HT1080 into basement membrane) were all negative.

In summary, the following facts are concluded: (1) FT-Alz (6), the structure being imaginatively created, exhibits high and characteristic antitumor activity together with the characters for reversing multidrug resistance by P-glycoprotein, inhibiting topoisomerase II, and inducing apoptosis; (2) the modes of antitumor actions of 6 and 10 with the same sugar portion are considerably

different from each other, which indicates again the importance of latent biological activity of aglycons in glycosides; (3) compound 6 may not be recognized as a useful substance if screened on a classical assay using P388 (or L1210) cells.

Acknowledgements

We express deep thanks to the Screening Committee of New Anticancer Agents supported by Grant-in-Aid for Scientific Research on Priority Area "Cancer" from The Ministry of Education, Science, Sports and Culture, Japan (chairman, Dr. Takao Yamori). In respective areas, we acknowledge Dr. Takao Yamori of the Japanese Foundation for Cancer Research for carrying out the human cell line panel screening as well as the MDR assay, Professor Toshiwo Andoh of Soka University for the assay on topoisomerase II, Professor Takashi Tsuruo and Professor Mikihiko Naito of the University of Tokyo for the apoptosis-inducing test, Professor Ikuo Saiki of Toyama Medical and Pharmaceutical University for bioassay of invasion to basement membrane, Professor Michiaki Kohno of Nagasaki University for tubulin assay, Professor Yoshimasa Uehara of National Institute of Infectious Diseases for protein kinase assay, and Professor Mayumi Ono of Kyushu University for angiogenesis assay. We also express deep thanks to Ms. Yumiko Iizuka of Pharmaceutical Research Center of Meiji Seika Co., Ltd., for the bioassay of Table 1, Ms. Chisato Nosaka of Institute of Microbial Chemistry (IMC) for measurement of in vivo toxicity, and Dr. Hikaru Nakamura of IMC for X-ray crystallography. Finally, we thank Dr. Tomio Takeuchi, the director of IMC, for helpful discussions.

References and Notes

- 1. Tsuchiya, T.; Takagi, Y.; Ok, K.; Umezawa, S.; Takeuchi, T.; Wako, N.; Umezawa, H. *J. Antibiot.* **1986**, *39*, 731.
- 2. Ok, K.; Takagi, Y.; Tsuchiya, T.; Umezawa, S.; Umezawa, H. *Carbohydr. Res.* **1987**, *169*, 69.

- 3. Bachur, N. R.; Gordon, S. L.; Gee, M. V. Cancer Res. 1978, 38, 1745.
- 4. Monks, T. J.; Hanzlik, R. P.; Cohen, G. M.; Ross, D.; Graham, D. G. *Toxicol. Appl. Pharmacol.* **1992**, *112*, 2.
- 5. Auerbach, G. J. Chem. Soc. 1879, 35, 799.
- 6. Graebe, C. Ann. 1880, 201, 333.
- 7. Hosoda, Y. J. Synth. Org. Chem. Jpn. 1951, 9, 23.
- 8. **6**: ¹H NMR (pyridine- d_5 , 500 MHz): δ 9.93 (dd, $J_{1,2}$ 9, $J_{1,3}$ 1 Hz, H-1), 8.97 (dd, $J_{2,3}$ 4 Hz, H-3), 7.39 (dd, H-2), 6.87 (br d, $J_{1',F}$ 9 Hz, H-1'), 5.73 (br d, $J_{2',F}$ 49 Hz, H-2'), 1.59 (d, 3 H, $J_{5',6'}$ 6.5 Hz, CH₃-5'). ¹⁹F NMR (pyridine- d_5 , 235 MHz): δ –199.6 from CFCl₃ (ddd, $J_{1',F}$ 9, $J_{2',F}$ 49, $J_{3',F}$ 34 Hz, F-2').
- 9. Detailed NMR data of 9 will be submitted in a forthcoming article.
- 10. Yamori, T.; Matsunaga, A.; Sato, S.; Yamazaki, K.; Komi, A.; Ishizu, K.; Mita, I.; Edatsugi, H.; Matsuba, Y.; Takezawa, K.; Nakanishi, O.; Kohno, H.; Nakajima, Y.; Komatsu, H.; Andoh, T.; Tsuruo, T. *Cancer Res.* **1999**, *59*, 4042
- 11. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Cambell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757.
- 12. Yamori, T. Jpn. J. Cancer Chemother. 1997, 24, 129.
- 13. GI_{50} is the drug concentration (by log scale), at which cell growth meets the requirement $(T-T_0/C-T_0)\times 100 = 50$, where T_0 , T_0 , and T_0 are cell population densities at time zero T_0 , and those at time T_0 in the presence and absence of drug, respectively; TGI and T_0 are the drug concentrations giving $T_0/T_0 = 1$ and $T_0/T_0/T_0 = 1$ and $T_0/T_0/T_0 = 1$
- 14. Yamori, T. Jpn J. Cancer Chemother. 1998, 25 (Supplement II), 373.
- 15. Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1981, 41, 1967.
- 16. Broxterman, H. J.; Kuiper, C. M.; Schuurhuis, G. J.; Tsuruo, T.; Pinendo, H. M.; Lankelma, J. *Biochem. Pharmacol.* **1988**, *37*, 2389.
- 17. Recombinant human topoisomerase IIa purified from the lysates of a recombinant baculovirus-infected H5 insect cells was used.
- 18. Marini, J. C.; Miller, K. G.; Englund, P. T. J. Biol. Chem. 1980, 255, 4976.
- 19. Tanabe, K.; Ikegami, Y.; Ishida, R.; Andoh, T. *Cancer Res.* **1991**, *51*, 4903.
- 20. Personal communication from Professor Toshiwo Andoh of Soka University.